A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows

نویسندگان

  • Dongsu Ryu
  • Francesco Miniati
  • T. W. Jones
چکیده

A description is given for preserving ∇ · ~ B = 0 in a magnetohydrodynamic (MHD) code that employs the upwind, Total Variation Diminishing (TVD) scheme and the Strang-type operator splitting for multi-dimensionality. The method is based on the staggered mesh technique to constrain the transport of magnetic field: the magnetic field components are defined at grid interfaces with their advective fluxes on grid edges, while other quantities are defined at grid centers. The magnetic field at grid centers for the upwind step is calculated by interpolating the values from grid interfaces. The advective fluxes on grid edges for the magnetic field evolution are calculated from the upwind fluxes at grid interfaces. Then, the magnetic field can be maintained with ∇· ~ B = 0 exactly, if this is so initially, while the upwind scheme is used for the update of fluid quantities. The correctness of the code is demonstrated through tests comparing numerical solutions either with analytic solutions or with numerical solutions from the code using an explicit divergence-cleaning method. Also the robustness is shown through tests involving realistic astrophysical problems. Subject headings: magnetohydrodynamics: MHD – methods: numerical Department of Astronomy & Space Science, Chungnam National University, Daejeon 305-764, Korea: [email protected] Department of Astronomy, University of Minnesota, Minneapolis, MN 55455: [email protected], [email protected] Department of Physics and Astronomy, University of Rochester, Rochester NY 14627: [email protected] Submitted to the Astrophysical Journal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIAA 2001–2623 Multi-Dimensional Upwind Constrained Transport on Unstructured Grids for ‘Shallow Water’ Magnetohydrodynamics

Novel Multi-dimensional Upwind Constrained Transport (MUCT) schemes on un-structured triangular grids are described. Constrained Transport (CT) discretizations conserve the divergence-free nature of divergence-free vector fields on the discrete level. Multi-dimensional Upwind (MU) schemes generalize the concept of dimensionally split upwind schemes for hyperbolic systems to truly multidimension...

متن کامل

On the Divergence-Free Condition in Godunov-Type Schemes for Ideal Magnetohydrodynamics: the Upwind Constrained Transport Method

We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the Constrained Transport (CT) discretization technique for the magnetic field components, originally developed for the linear induc...

متن کامل

Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations

A main issue in nonstationary, compressible magnetohydrodynamic (MHD) simulations is controlling the divergence of the magnetic flux. This paper presents a general procedure showing how to modify the intercell fluxes in a conservative MHD finite volume code such that the scheme becomes locally divergence preserving. That is, a certain discrete divergence operator vanishes exactly during the ent...

متن کامل

Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium

The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...

متن کامل

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998